This image shows Dylan Wood

Dylan Wood

Dr. -Ing. M.Sc. BArch

Former Research Group Leader | Material Programming
2015 - 2023

Contact

+49 711 685

Website
Business card (VCF)

Stuttgart
Deutschland

Office Hours

Thrusdays, 16:00- 17:00 by webex appointment

Google Scholar

ResearchGate

 

Core Publications:

Wood, D.: 2021, Material programming for fabrication : integrative computational design for self-shaping curved wood building components in architecture. ICD Research Report No. 6, Universität Stuttgart, Stuttgart. (http://dx.doi.org/10.18419/opus-11968)

 

Wood, D., Cheng, T., Tahouni, Y., Menges, A.: 2023, Material Programming for Bio-inspired and Bio-based Hygromorphic Building Envelopes, in Wang, J. (eds.), Advanced Materials in Smart Building Skins for Sustainability, Springer Nature Switzerland. (ISBN: 978-3031096945, doi:10.1007/978-3-031-09695-2_4)

Tahouni, Y., Cheng, T., Lajewski, S., Benz, J. Bonten, C. Wood, D., Menges, A.:2023, Codesign of Biobased Cellulose-Filled Filaments and Mesostructures for 4D Printing Humidity Responsive Smart Structures, 3D Printing and Additive Manufacturing, Mary Ann Liebert, Inc.(http://doi.org/10.1089/3dp.2022.0061)

Wood, D., Grönquist, P., Bechert, S., Aldinger, L., Riggenbach, D., Lehmann, K., Rüggeberg, M., Burgert, I., Knippers, J., Menges, A.: 2020, From Machine Control to Material Programming: Self-Shaping Wood Manufacturing of a High Performance Curved CLT Structure -- Urbach Tower, in Burry, J., Sabin, J., Sheil, B., Skavara, M. (eds.), Fabricate 2020: Making Resilient Architecture, UCL Press, London, pp. 50-57. (https://doi.org/10.2307/j.ctv13xpsvw.11)

Grönquist, P., Wood, D., Hassani, M., Wittel, F., Menges, A., Rüggeberg, M.: 2019, Analysis of hygroscopic self-shaping wood at large scale for curved mass timber structures, Science Advances, Vol. 5 No. 9, pp. eaax1311. (doi:10.1126/sciadv.aax1311 )

Wood, D., Brütting, J., Menges, A.: 2018, Self-Forming Curved Timber Plates: Initial Design Modeling for Shape-Changing Material Buildups, in IASS – Creativity in Structural Design [Proceedings of the IASS Symposium 2018], Cambridge, MA.

Wood, D. , Vailati, C., Menges, A., Rüggeberg, M.: 2018, Hygroscopically actuated wood elements for weather responsive and self-forming building parts- Facilitating upscaling and complex shape changes. Construction and Building Materials, Elsevier, March 2018, DOI:10.1016/j.conbuildmat.2017.12.134

Wood, D. , Correa, D., Krieg, O., Menges, A.: 2016, Material computation—4D timber construction: Towards building-scale hygroscopic actuated, self-constructing timber surfaces, International Journal of Architectural Computing (IJAC), Sage, February 2016, DOI: 10.1177/1478077115625522

Aldinger, L*., Bechert, S*., Wood, D*., Knippers, J., Menges, A.: 2020, Design and Structural Modelling of Surface-Active Timber Structures Made from Curved CLT – Urbach Tower, Remstal Gartenschau 2019, in Gengnagel, C., Baverel, O., Burry, J., Ramsgaard Thomsen, M., Weinzierl, S. (Eds.), Impact: Design With All Senses, Springer International Publishing, Cham, pp. 419-432. (doi: 10.1007/978-3-030-29829-6 33)

Bechert, S., Aldinger, L., Wood, D., Knippers, J., Menges, A.: 2021, Urbach Tower: Integrative structural design of a lightweight structure made of self-shaped curved cross-laminated timber. Structures, 33, 3667--3681. (DOI: 10.1016/j.istruc.2021.06.073)

 

Co-authored publications from members of my research team:

Tahouni, Y., Krüger, F., Poppinga, S., Wood, D., Pfaff, M., Rühe, J., Speck, T., Menges, A.: 2021, Programming sequential motion steps in 4D-printed hygromorphs by architected mesostructure and differential hygro-responsiveness. Bioinspiration & Biomimetics. (DOI: 10.1088/1748-3190/ac0c8e)

Cheng, T., Thielen, M., Poppinga, S., Tahouni, Y., Wood, D., Steinberg, T., Menges, A., Speck, T.: 2021, Bio‐Inspired Motion Mechanisms: Computational Design and Material Programming of Self‐Adjusting 4D‐Printed Wearable Systems. Advanced Science, 2100411. (DOI: 10.1002/advs.202100411) 

Cheng, T., Wood, D., Kiesewetter, L., Özdemir, E., Antorveza, K., Menges, A.: 2021, Programming material compliance and actuation: hybrid additive fabrication of biocomposite structures for large-scale self-shaping. Bioinspiration & Biomimetics. (DOI: 10.1088/1748-3190/ac10af)

Krüger, F., Thierer, R., Tahouni, Y., Sachse, R., Wood, D., Menges, A., Bischoff, M., Rühe, J.: 2021, Development of a Material Design Space for 4D-Printed Bio-Inspired Hygroscopically Actuated Bilayer Structures with Unequal Effective Layer Widths. Biomimetics, 6, 58. (DOI: 10.3390/biomimetics6040058)

Özdemir, E., Kiesewetter, L., Antorveza, K., Cheng, T., Leder, S., Wood, D., Menges, A.: 2021, Towards Self-shaping Metamaterial Shells: A Computational Design Workflow for Hybrid Additive Manufacturing of Architectural Scale Double-Curved Structures. Proceedings of the 2021 DigitalFUTURES (CDRF 2021), pp. 275-285. (DOI: 10.1007/978-981-16-5983-6_26) 

Giachini, P., Gupta, S., Wang, W., Wood, D., Yunusa, M., Baharlou, E., Sitti, M., Menges, A.: 2020, Additive manufacturing of cellulose-based materials with continuous, multidirectional stiffness gradients, Science Advances, Vol. 6, No. 8. (doi: 10.1126/sciadv.aay0929) URL

Tahouni, Y., Cheng, T., Wood, D., Sachse, R., Thierer, R., Bischoff, M., Menges, A.: 2020, Self-shaping Curved Folding: a 4D-printing method for fabrication of curved creased origami structures. In Symposium on Computational Fabrication (SCF '20), November 5–6, 2020, Virtual Event, USA. ACM, New York, NY, USA. (doi: 10.1145/3424630.3425416)

Cheng, T., Tahouni, Y., Wood, D., Stolz, B., Mulhaupt, R., Menges, A.: 2020, Multifunctional Mesostructures: Design and Material Programming for 4D-printing. In Symposium on Computational Fabrication (SCF '20), November 5–6, 2020, Virtual Event, USA. ACM, New York, NY, USA. (doi: 10.1145/3424630.3425418)

Grönquist, P., Panchadcharam, P., Wood, D., Menges, A., Rüggeberg, M., Wittel, F.K.: 2020, Computational analysis of hygromorphic self-shaping wood gridshell structures. Royal Society Open Science 7, pp. 192210. (doi: https://doi.org/10.1098/rsos.192210) 

Cheng, T., Wood, D., Wang, X., Yuan, P., Menges, A.: 2020, Programming Material Intelligence: An Additive Fabrication Strategy for Self-Shaping Biohybrid Components. Living Machines: Conference on Biomimetic and Biohybrid Systems.

 

Co-authored Publications:

Łochnicki, G., Kubail Kalousdian, N., Leder, S., Maierhofer, M., Wood, D., Menges, A.: 2021, Co-Designing Material-Robot Construction Behaviors: Teaching distributed robotic systems to leverage active bending for light-touch assembly of bamboo bundle structures. In ACADIA - Realignments: Toward Critical Computation [Proceedings of the ACADIA Conference 2021]

Leder S., Weber R., Wood D. Bucklin O., Menges A.: 2019, Distributed Robotic Timber Construction Designing of in-situ timber construction system with robot-material collaboration in  ACADIA – Ubiquity and Autonomy [Proceedings of the ACADIA Conference 2019], Austin, TX.

Leder, S., Weber, R., Bucklin, 0., Wood, D., Menges, A.: 2019, Design and prototyping of a single axis, building material integrated, distributed robotic assembly system, in 2019 IEEE: 4th International Workshops on Foundations and Applications of Self* Systems (FAS*), 3rd International Workshop on Self-Organised Construction (SOCO), Umea, Sweden.

Garufi, D., Wagner, H.J., Bechert, S., Schwinn, T., Wood, D., Menges, A., Knippers, J.: 2018, Fibrous Timber Joints for Lightweight Segmented Hybrid Timber Shell , in“Digital Timber Construction”, Research Culture in Architecture conference on cross-disciplinary collaboration, Faculty of Architecture, TU Kaiserslautern, Kaiserslautern, Germany.

Leder, S., Weber, R., Bucklin, O., Wood, D., Menges, A.: 2018, Towards Distributed In-Situ Robotic Timber Construction, in "Robotics in Timber Construction", , Research Culture in Architecture conference on cross-disciplinary collaboration, Faculty of Architecture, TU Kaiserslautern, Kaiserslautern, Germany.

Wood, D., Yablonina, M., Aflalo, M., Chen, J., Tahanzadeh, B., Menges, A.: 2018, Cyber Physical Macro Material as a UAV [re]Configurable Architectural System, in Willmann J., Block P., Hutter M., Byrne K., Schork T. (eds) Robotic Fabrication in Architecture, Art and Design 2018. ROBARCH 2018, DOI: 10.1007/978-3-319-92294-2_25

Dierichs, K., Wood, D., Correa, D., Menges, A.: 2017, Smart Granular Materials: Prototypes for Hygroscopically Actuated Shape-Changing Particles, in ACADIA – Disciplines & Disruption [Proceedings of the ACADIA Conference 2017], Cambridge, MA, pp. 222-231. (ISBN: 978-0-692-96506-1)

Forestiero, D., Xenos, N., Wood, D., Baharlou, E.: 2018,Low-tech Shape-Shifting Space Frames, in IASS – Creativity in Structural Design [Proceedings of the IASS Symposium 2018], Cambridge, MA.

ITECH MSc. Program

ITECH MSc. Thesis Project Supervision (Selected):

Workshops:

At ICD Dylan leads the Material Programming Research Group and is co-founder of the spin-off company hylo.tech.His research is focused on developing intelligent design and fabrication principles for 'smart' shape-changing materials as a form of material robotics that can be applied in building systems, construction, and manufacturing. He has worked extensively in collaboration with material science partners at the ETH, Zurich, EMPA, Dübendorf, and the Physical Intelligence Department at the Max Plank Institute for Physical Systems, Stuttgart. His current doctoral research is funded by the Swiss Commission for Technology and Innovation (CTI / KTI), and the Getty Foundation’s GettyLab. He holds an ITECH, MSc. with distinction from the University of Stuttgart, and a B.Arch, magna cum laude from the University of Southern California. Professionally he has worked as a designer and computational fabrication specialist at Barkow Leibinger Architects in Berlin, Germany and DOSU Studio Architects in Los Angeles, CA.

Dylan is currently apointed as Assistant Professor at the University of Oregon, School of Architecture & Environment and is a facullty colaborator at the Tall Wood Design Institue.

Google Scholar

ResearchGate

 

Selected Media:

Watch this unbelievable wood furniture assemble itself - Fast Company

Programming Elegance - University of Stuttgart - Research Magazine

Wie sich Holzmöbel selbst in Form bringen - SWR2

Cool New Method Curves Wood Without Machines - Popular Mechanics

Tall twisting tower is made from wood that shapes itself as it dries - New Scientist

These researchers invented an entirely new way of building with wood - Fast Company

Building with wood that bends itself into shape - ETH Zurich

Wood that shapes itself -Empa News

Wie bringt Holz sich selbst in Form? – P.M Wissen - Servus TV

With a new technology, wood gets itself into shape - NZZ (Switzerland)

University of Stuttgart makes Urbach Tower from self-shaping wood - DEZEEN

Self-shaping timber could rival CLT for structural use - RIBA Journal

This Week in Tech: Constructing with Deforming Wood—Intentionally - ARCHITECT Magazine

Urbach Tower Pioneers "Self-Shaping" Wood Construction Technique - Core77

Interview to Dylan Wood: the Urbach Tower and wood panels that curve on their own - Design Wanted

Stuttgart tiene una torre de madera inteligente única en el mundo - Condé Nast - Traveler

This Curved Tower in Stuttgart Was Formed Without Machines - DEPARTURES

Landmark Tower in Germany is Built out of Self-Shaping Wood - Avontuura

A Unique Landmark Built From Self-Shaping Wood- SCALE

Self-Twisting Urbach Tower - Cool Material

Masters students propose canopy that uses drones to continuously adapt - Design boom

A building that moves by itself - RIBA Journal

 

Lectures:

TEDx Stuttgart - The Super Powers of Wood

Patents:

EP 4  019 251 A1 -  Manufactruing method of a multilayer component of layered elements and a multi-layer component of layered elements as such

PCT/EP2019/056817 - Herstellungsverfahren für geformte, gestapelte, mehrschichtige, holzbasierte baukomponenten

To the top of the page